831 to 840 of 846 Results
Mar 23, 2021 -
Replication Data for: On the Universality of the Double Descent Peak in Ridgeless Regression
Python Source Code - 16.2 KB -
MD5: 727ea9050972d03f12c6aa5b32b7e37c
|
Mar 23, 2021 -
Replication Data for: On the Universality of the Double Descent Peak in Ridgeless Regression
Gzip Archive - 5.6 GB -
MD5: 220970917c2371206a808c02bbb9f359
Data generated by running the code |
Mar 23, 2021 -
Replication Data for: On the Universality of the Double Descent Peak in Ridgeless Regression
Python Source Code - 2.7 KB -
MD5: d298130fc29f0a84b33b58ad0d100a06
|
Mar 23, 2021 -
Replication Data for: On the Universality of the Double Descent Peak in Ridgeless Regression
Python Source Code - 15.3 KB -
MD5: 9017e22f361d3ee27b7fa52a241a2834
|
Mar 23, 2021 -
Replication Data for: On the Universality of the Double Descent Peak in Ridgeless Regression
Markdown Text - 1.6 KB -
MD5: d2572a82e8003c56d0307012ac4069d8
|
Mar 23, 2021 -
Replication Data for: On the Universality of the Double Descent Peak in Ridgeless Regression
Python Source Code - 11.1 KB -
MD5: 1a719b0984045eca7ce97bc54b4b9e2b
|
Mar 23, 2021 -
Replication Data for: On the Universality of the Double Descent Peak in Ridgeless Regression
Python Source Code - 2.6 KB -
MD5: f921b3cd6389ea9f8e4707a3655a75f7
|
Mar 16, 2021
SimTech Project PN6-3 "Understanding Physical Constraints in Machine Learning for Simulation" |
PNG Image - 662.9 KB -
MD5: 5068b2ecd03c252fdf386983052df6d8
Screenshot of the analysis system |
ZIP Archive - 63.8 MB -
MD5: 8082811d4563eaffbed93e1bdfc0dd05
Video demonstrating the features of the system |