611 to 620 of 867 Results
Aug 24, 2022 -
Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression [arXiv v2]
Python Source Code - 2.3 KB -
MD5: 7d08f69df94b1c9f9f9a36f3460c4d72
|
Aug 24, 2022 -
Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression [arXiv v2]
Python Source Code - 10.9 KB -
MD5: 78d64c4ee6eb69f1b49af52d789413f7
|
Aug 24, 2022 -
Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression [arXiv v2]
Jupyter Notebook - 176.1 KB -
MD5: ac2f88747434be3e8ba8e320cce93c2d
|
Aug 24, 2022 -
Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression [arXiv v2]
Python Source Code - 7.4 KB -
MD5: f612e49528fcb4c2b9edd09209db527a
|
Aug 24, 2022 -
Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression [arXiv v2]
Python Source Code - 2.9 KB -
MD5: 73fa0d1da429485890f0c8f3845303e4
|
Jun 20, 2022 - PN 6-3
Holzmüller, David; Steinwart, Ingo, 2022, "Code for: Training Two-Layer ReLU Networks with Gradient Descent is Inconsistent", https://doi.org/10.18419/DARUS-2978, DaRUS, V1
This data set contains code used to generate figures and tables in our paper "Training Two-Layer ReLU Networks with Gradient Descent is Inconsistent". The code is also available on GitHub. Information on the code and installation instructions can be found in the file README.md. |
Python Source Code - 58 B -
MD5: 2b8520afbcb24f93040273f4edfee4b7
|
Python Source Code - 19.2 KB -
MD5: 06303383461187b4df57f1e6a54afb12
|
Python Source Code - 2.0 KB -
MD5: 49e899167f27aa3a56082814c8446a2a
|
Plain Text - 11.1 KB -
MD5: 620a9251fad92ed98289fc61c7ee3681
|