381 to 390 of 457 Results
Jul 7, 2021 -
Fracture network segmentation
Plain Text - 1.5 KB -
MD5: 68ae24ecafdaa06a04bf09504eb44fd2
This file contains the workflow of the local threshold method |
Jul 7, 2021 -
Fracture network segmentation
Plain Text - 1.5 KB -
MD5: 2c64aaca9f227470a4c9602988e8f9e8
The predictions of the Random forest method can be merged into the original size of image with the code. |
Jul 7, 2021 -
Fracture network segmentation
Unknown - 2.0 KB -
MD5: 4e3d9a1297a097e73d8e5433ca5449e3
Prediction generator of the random forest method. The input file path, save path and trained model have to be chosen. |
Jul 7, 2021 -
Fracture network segmentation
Plain Text - 2.6 KB -
MD5: 1d388e58b5fd9037ef315ff386a6da77
This file contains instruction of how to operate the codes. |
Jul 7, 2021 -
Fracture network segmentation
Plain Text - 908 B -
MD5: 14c9f9428402bc7a550102032725a288
This file contains the workflow of the Sato method |
Jul 7, 2021 -
Fracture network segmentation
Hierarchical Data Format - 89.9 MB -
MD5: f8caecb9a1ddb337df1df2b6be0d82ed
Trained model of the U-net model.
This file is required to reproduce the results. |
Jul 7, 2021 -
Fracture network segmentation
Plain Text - 3.5 KB -
MD5: c4dbef168efd4edca836958329652022
The code to create the U-net architecture |
Jun 28, 2021
This dataverse includes the underlying data of the publication: Lee, D., Karadimitriou, N., Ruf, M., & Steeb, H. (2022). Detecting micro fractures: A comprehensive comparison of conventional and machine-learning based segmentation methods. Solid Earth (EGU). Submitted. |
Jun 22, 2021 -
Humidity and thermal triggered Shape Memory Effect - Rheology-based numerical modelling - Thermal Humid Mechanical Cycle
Tabular Data - 1.6 MB - 13 Variables, 24697 Observations - UNF:6:kJCrJ2myXSEklpfIfr7AfQ==
|
Jun 22, 2021 -
Humidity and thermal triggered Shape Memory Effect - Rheology-based numerical modelling - Dynamic Mechanical Thermal Humidity Analysis
Tabular Data - 607 B - 3 Variables, 26 Observations - UNF:6:SUp9rrASiGNdUAppeo0opw==
|