Persistent Identifier
|
doi:10.18419/DARUS-4475 |
Publication Date
|
2024-09-18 |
Title
| Satellite Altimetry-based Extension of global-scale in situ river discharge Measurements (SAEM) |
Author
| Saemian, PeymanInstitute of Geodesy, University of StuttgartORCID0000-0003-2612-8718
Elmi, OmidInstitute of Geodesy, University of StuttgartORCID0000-0003-2668-735X
Stroud, MollyDepartment of Geosciences, Virginia Polytechnic Institute and State University, Virginia, USAORCID0000-0001-7389-1586
Riggs, RyanWater Mission Area, U.S. Geological Survey, Conroe, TX, USAORCID0000-0001-6834-9469
Kitambo, Benjamin M.Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse, CNES/CNRS/IRD/UT3, Toulouse, FranceORCID0000-0001-9899-2842
Papa, FabriceLaboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse, CNES/CNRS/IRD/UT3, Toulouse, FranceORCID0000-0001-6305-6253
Allen, George H.Department of Geosciences, Virginia Polytechnic Institute and State University, Virginia, USAORCID0000-0001-8301-5301
Tourian, Mohammad J.Institute of Geodesy, University of StuttgartORCID0000-0002-4200-0848 |
Point of Contact
|
Use email button above to contact.
Saemian, Peyman (Institute of Geodesy, University of Stuttgart)
Tourian, Mohammad J. (Institute of Geodesy, University of Stuttgart) |
Description
| The Satellite Altimetry-based Extension of global-scale in situ river discharge Measurements (SAEM) dataset provides a comprehensive solution for addressing gaps in river discharge measurements by leveraging satellite altimetry. This dataset offers enhanced coverage for river discharge estimations by utilizing data from multiple satellite missions and integrating it with existing river gauge networks. It supports sustainable development and helps address complex water-related challenges exacerbated by climate change. The first version of SAEM includes (1) height-based discharge estimates for 8,730 river gauges, covering approximately 88% of the total gauged discharge volume globally. These estimates demonstrate a median Kling-Gupta Efficiency (KGE) of 0.48, surpassing the performance of current global datasets. (2) Catalog of Virtual Stations (VSs): a catalog of VSs defined by specific criteria, including each station’s coordinates, associated satellite altimetry missions, distance to discharge gauges, and quality flags. (3) Altimetric Water Level Time Series: time series data of water levels from VSs that provide high-quality discharge estimates. The water level data are sourced from both existing Level-3 datasets and newly generated data within this study, including contributions from Hydroweb.Next, DAHITI, GRRATS, and HydroSat. Non-parametric quantile mapping functions: for VSs, which model the transformation of water level time series into discharge data using a Nonparametric Stochastic Quantile Mapping Function approach. |
Subject
| Earth and Environmental Sciences |
Keyword
| Discharge https://www.wikidata.org/wiki/Q8737769 (Wikidata)
River Discharge http://vocabs.lter-europe.net/EnvThes/21242 (EnvThes)
Remote Sensing https://id.loc.gov/authorities/subjects/sh00007607.html (LCSH)
Satellite Altimetry https://www.wikidata.org/wiki/Q1497312 (Wikidata) |
Topic Classification
| Geosciences (DFGFO) https://w3id.org/dfgfo/2024/34 |
Funding Information
| DFG: 324641997 |
Depositor
| Saemian, Peyman |
Deposit Date
| 2024-09-10 |