71 to 80 of 700 Results
Markdown Text - 656 B -
MD5: 70bc09d90a6ad9cbbaa00f49b1202df3
|
Plain Text - 113 B -
MD5: 34c19b2f6584a66548d9a9752a074e05
|
Python Source Code - 12.9 KB -
MD5: 8d8de50a4b06e148c6e4b59b18724050
|
Unknown - 3.8 KB -
MD5: b0970bb2e676eb4b24c0a2df480800bf
|
Python Source Code - 3.4 KB -
MD5: 5b11e0188ee3245b3f519915e13c039d
|
Python Source Code - 6.8 KB -
MD5: 867af2a3917d3ee8a50920e7b6ee1337
|
Python Source Code - 9.5 KB -
MD5: 93c38c77dd14bdde3dd406040451d79f
|
Python Source Code - 2.0 KB -
MD5: 6152755cc17abfd2ee40d1b4e9812eea
|
Jul 5, 2024
Xiong, Bo; Nayyeri, Mojtaba; Cochez, Michael; Staab, Steffen, 2024, "Code for Hyperbolic Embedding Inference for Structured Multi-Label Prediction", https://doi.org/10.18419/DARUS-3988, DaRUS, V1
This is a PyTorch implementation of the paper Hyperbolic Embedding Inference for Structured Multi-Label Prediction published in NeurIPS 2022. The code provides the Python scripts to reproduce the experiments in the paper, as well as a proof-of-concept example of the method. To execute the code, follow the instructions in the README.md file. For mor... |
Python Source Code - 28.0 KB -
MD5: f19542fc26a4940d6e665ffeaa548b91
|