101 to 110 of 700 Results
Python Source Code - 2.1 KB -
MD5: 73e91deca4a7769204fc1a6bb803ea5c
|
Markdown Text - 2.6 KB -
MD5: da600535121f9bb294c1ec0d1fde5c06
|
Python Source Code - 7.0 KB -
MD5: 4e8393200eb4873cda6bcff095686025
|
Unknown - 1.7 MB -
MD5: f259d834e7e1f9eb926e5044ff44ab5a
|
Unknown - 2.7 MB -
MD5: 7150d7e417a15d2a080cef133ceb41c0
|
Unknown - 2.1 MB -
MD5: 8a5280acee9aabcc79874772899972da
|
Unknown - 3.4 MB -
MD5: 2d3574b8359a44752413ababbfbe3282
|
Jul 5, 2024
Xiong, Bo; Nayyeri, Mojtaba; Luo, Linhao; Wang, Zihao; Pan, Shirui; Staab, Steffen, 2024, "Replication Data for NestE: Modeling Nested Relational Structures for Knowledge Graph Reasoning (AAAI'24)", https://doi.org/10.18419/DARUS-3978, DaRUS, V1
This code is a PyTorch implementation of the paper "NestE: Modeling Nested Relational Structures for Knowledge Graph Reasoning (AAAI'24)". NestE is a knowledge graph embedding method that can encode nested facts represented by quoted triples (h,r,t) in which the subject and object are triples themselves, e.g., ((BarackObama, holds_position, Preside... |
Jul 5, 2024 -
Replication Data for NestE: Modeling Nested Relational Structures for Knowledge Graph Reasoning (AAAI'24)
Plain Text - 69 B -
MD5: 60fd6cb4fea534b4d24a155e4b9a96f9
|
Jul 5, 2024 -
Replication Data for NestE: Modeling Nested Relational Structures for Knowledge Graph Reasoning (AAAI'24)
Plain Text - 69 B -
MD5: 0fb1015a55968cd9bbb2d105ba1204de
|