31 to 40 of 700 Results
Jul 5, 2024 -
Code for Faithful Embeddings for EL++ Knowledge Bases
Markdown Text - 1.5 KB -
MD5: 3c0bda6729095ab57eee6c06f6118aec
|
Jul 5, 2024 -
Code for Faithful Embeddings for EL++ Knowledge Bases
Plain Text - 3.7 KB -
MD5: 8a1a70d38d7b0e84fec586790364a3fd
|
Jul 5, 2024 -
Code for Faithful Embeddings for EL++ Knowledge Bases
Jupyter Notebook - 43.0 KB -
MD5: 319bf9309e28e32e3f413353a4fd1b4c
|
Jul 5, 2024 -
Code for Faithful Embeddings for EL++ Knowledge Bases
Unknown - 37.7 MB -
MD5: e3a65b974d25897b34a7fcebeedccbcd
|
Jul 5, 2024 -
Code for Faithful Embeddings for EL++ Knowledge Bases
Unknown - 20.6 MB -
MD5: f76abde5460e9f39bf51e0bc80ad7f0b
|
Jul 5, 2024
Xiong, Bo; Nayyeri, Mojtaba; Pan, Shirui; Staab, Steffen, 2024, "Code for Shrinking Embeddings for Hyper-relational Knowledge Graphs", https://doi.org/10.18419/DARUS-3979, DaRUS, V1
This is a Pytorch implementation of the paper Shrinking Embeddings for Hyper-relational Knowledge Graphs published in ACL'23. This code is used to reproduce the experiments of the method ShrinkE, a geometric embedding approach for hyper-relational knowledge graphs. The code is implemented with Python 3 and pytorch. The code is tested on public data... |
Unknown - 5.9 KB -
MD5: 69082be4d7ee139e2db773370bff4ab9
|
Unknown - 5.9 KB -
MD5: 1f2f69bf5c26d9265bd569aed7ab4e8c
|
Python Source Code - 8.4 KB -
MD5: 22e1270c46aa7172d1030eb215aed0d3
|
Unknown - 6.2 KB -
MD5: d3253a9790c4f09fc0817fd115f2c3bc
|