1 to 10 of 117 Results
Jan 22, 2025
Zhang, Xi, 2024, "Data for: Ab initio machine-learning unveils strong anharmonicity in non-Arrhenius self-diffusion of tungsten", https://doi.org/10.18419/DARUS-4564, DaRUS, V2
The dataset contains key files to reproduce the results presented in the article " Ab initio machine-learning unveils strong anharmonicity in non-Arrhenius self-diffusion of tungsten": DFT input files: INCAR, KPOINTS. All POSCAR files for DFT and thermodynamic integration Moment tensor potential (MTP) file Training dataset for MTP All Hessian Matri... |
Jan 22, 2025 -
Data for: Ab initio machine-learning unveils strong anharmonicity in non-Arrhenius self-diffusion of tungsten
ZIP Archive - 2.4 KB -
MD5: d35f986a660e6a0e85b9a0835f764de8
DFT input files for various calculations: INCARs and KPOINTS |
Nov 11, 2024 -
Data for: Ab initio machine-learning unveils strong anharmonicity in non-Arrhenius self-diffusion of tungsten
ZIP Archive - 13.1 MB -
MD5: 4f1b005bb20cbed2bc070f9717ef574b
All Hessian Matrix files for thermodynamic integration |
Nov 11, 2024 -
Data for: Ab initio machine-learning unveils strong anharmonicity in non-Arrhenius self-diffusion of tungsten
ZIP Archive - 32.5 KB -
MD5: a56b391cbf1092bd61d6f24efafcd018
All imaginary mode files for transition state |
Nov 11, 2024 -
Data for: Ab initio machine-learning unveils strong anharmonicity in non-Arrhenius self-diffusion of tungsten
Fixed Field Text Data - 102 B -
MD5: 8e7ff7329a52855e2dc501f30332585f
Utilized lattice expansion |
Nov 11, 2024 -
Data for: Ab initio machine-learning unveils strong anharmonicity in non-Arrhenius self-diffusion of tungsten
Plain Text - 745.0 KB -
MD5: d91a6fc1cfcc8b3f529795f431879778
Finally optimized moment tensor potential file |
Nov 11, 2024 -
Data for: Ab initio machine-learning unveils strong anharmonicity in non-Arrhenius self-diffusion of tungsten
Plain Text - 32.7 MB -
MD5: 298a742a3798cf8d7321f86c95a651f4
Training dataset for 24g MTP (2591 cfgs in total) |
Nov 11, 2024 -
Data for: Ab initio machine-learning unveils strong anharmonicity in non-Arrhenius self-diffusion of tungsten
ZIP Archive - 26.4 KB -
MD5: 6e6e36dec5a8361508601b8a3111ae5d
All DFT and thermodynamic integration POSCAR files |
Nov 11, 2024 -
Data for: Ab initio machine-learning unveils strong anharmonicity in non-Arrhenius self-diffusion of tungsten
MS Excel Spreadsheet - 100.3 MB -
MD5: f0211e7ab7a7df1bbf6109a37cc63076
All data presented in graphs within the Figures and Supplementary Figures. |
Oct 29, 2024
Ou, Yongliang; Ikeda, Yuji; Scholz, Lena; Divinski, Sergiy; Fritzen, Felix; Grabowski, Blazej, 2024, "Data for: Atomistic modeling of bulk and grain boundary diffusion in solid electrolyte Li6PS5Cl using machine-learning interatomic potentials", https://doi.org/10.18419/DARUS-4510, DaRUS, V1
The data in this repository support the findings presented in the article "Atomistic modeling of bulk and grain boundary diffusion in solid electrolyte Li6PS5Cl using machine-learning interatomic potentials" by Ou et al. The repository contains the training sets, the fitted machine-learning interatomic potentials (MTPs), and the relaxed bulk and gr... |