11 to 20 of 123 Results
Nov 11, 2024 -
Data for: Ab initio machine-learning unveils strong anharmonicity in non-Arrhenius self-diffusion of tungsten
Plain Text - 745.0 KB -
MD5: d91a6fc1cfcc8b3f529795f431879778
Finally optimized moment tensor potential file |
Nov 11, 2024 -
Data for: Ab initio machine-learning unveils strong anharmonicity in non-Arrhenius self-diffusion of tungsten
Plain Text - 32.7 MB -
MD5: 298a742a3798cf8d7321f86c95a651f4
Training dataset for 24g MTP (2591 cfgs in total) |
Nov 11, 2024 -
Data for: Ab initio machine-learning unveils strong anharmonicity in non-Arrhenius self-diffusion of tungsten
ZIP Archive - 26.4 KB -
MD5: 6e6e36dec5a8361508601b8a3111ae5d
All DFT and thermodynamic integration POSCAR files |
Nov 11, 2024 -
Data for: Ab initio machine-learning unveils strong anharmonicity in non-Arrhenius self-diffusion of tungsten
MS Excel Spreadsheet - 100.3 MB -
MD5: f0211e7ab7a7df1bbf6109a37cc63076
All data presented in graphs within the Figures and Supplementary Figures. |
Oct 29, 2024 - Materials Design
Ou, Yongliang; Ikeda, Yuji; Scholz, Lena; Divinski, Sergiy; Fritzen, Felix; Grabowski, Blazej, 2024, "Data for: Atomistic modeling of bulk and grain boundary diffusion in solid electrolyte Li6PS5Cl using machine-learning interatomic potentials", https://doi.org/10.18419/DARUS-4510, DaRUS, V1
The data in this repository support the findings presented in the article "Atomistic modeling of bulk and grain boundary diffusion in solid electrolyte Li6PS5Cl using machine-learning interatomic potentials" by Ou et al. The repository contains the training sets, the fitted machine-learning interatomic potentials (MTPs), and the relaxed bulk and gr... |
Unknown - 11.1 KB -
MD5: 5bf3b371ba4aaea15e7602a47e9bdc86
|
Unknown - 11.1 KB -
MD5: a4a4cc9209c5edad0af3c484f4db8545
|
Unknown - 11.1 KB -
MD5: 649e2446f8179fbb7745a7eaff64fff4
|
Unknown - 11.1 KB -
MD5: 0976a5d6d74cd04505b383e3c88f46b2
|
Unknown - 11.1 KB -
MD5: 9120e4b35026d9e45db02703b1214d37
|