2,341 to 2,350 of 2,462 Results
Markdown Text - 2.7 KB -
MD5: 14c26b62957d6d0d54a3bb8c129ef11a
Readme file with additional information on the data and code. |
Plain Text - 2.2 KB -
MD5: f74ff9705432d88bf78f186c1d8a26ed
Python requirements for reproduction. |
Python Source Code - 4.8 KB -
MD5: 894906f22dbd93ef4e3308dae176b06d
Functions to perform quantum teleportation. |
Python Source Code - 2.3 KB -
MD5: 036a4b11c59ddedcf7cd58d159b52f72
Utility functions for the experiments. |
Nov 27, 2023 - Architectures and Middleware @IAAS
Pesl, Robin D.; Stötzner, Miles; Georgievski, Ilche; Aiello, Marco, 2023, "Replication Data for: Uncovering LLMs for Service-Composition: Challenges and Opportunities", https://doi.org/10.18419/DARUS-3767, DaRUS, V1, UNF:6:GV+GzTPs7xXW9ITeS6uC7Q== [fileUNF]
Experimental results for the ICSOC 2023 AI-PA position paper "Uncovering LLMs for Service-Composition: Challenges and Opportunities." Exemplars: List of scenarios found in the Google Scholar literature search. Experiment 1 Service Discovery: Chat history for experiment 1 asking ChatGPT for existing real services. Experiment 2 Service Composition: C... |
Nov 27, 2023 -
Replication Data for: Uncovering LLMs for Service-Composition: Challenges and Opportunities
PNG Image - 6.5 MB -
MD5: 8b133aab3938b353cdcf0f0f77d8f319
|
Nov 27, 2023 -
Replication Data for: Uncovering LLMs for Service-Composition: Challenges and Opportunities
PNG Image - 5.9 MB -
MD5: f0f01ecd67f160810c5a0cb60d0368e2
|
Nov 27, 2023 -
Replication Data for: Uncovering LLMs for Service-Composition: Challenges and Opportunities
PNG Image - 3.4 MB -
MD5: 09d212cfd434a4d4f09bae18057a7aec
|
Nov 27, 2023 -
Replication Data for: Uncovering LLMs for Service-Composition: Challenges and Opportunities
PNG Image - 9.9 MB -
MD5: 0302b55bca2be6363e66e9c0f4396956
|
Nov 27, 2023 -
Replication Data for: Uncovering LLMs for Service-Composition: Challenges and Opportunities
PNG Image - 4.7 MB -
MD5: 18d1599eb0596266c0b81193fec8668a
|