1 to 4 of 4 Results
Jul 25, 2023
Munz-Körner, Tanja; Künzel, Sebastian; Weiskopf, Daniel, 2023, "Supplemental Material for "Visual-Explainable AI: The Use Case of Language Models"", https://doi.org/10.18419/DARUS-3456, DaRUS, V1
Supplemental material for the poster "Visual-Explainable AI: The Use Case of Language Models" published at the International Conference on Data-Integrated Simulation Science 2023. Collection of videos and images showing our interactive visualization systems for exploring language... |
Jan 26, 2022
Munz, Tanja; Väth, Dirk; Kuznecov, Paul; Vu, Ngoc Thang; Weiskopf, Daniel, 2022, "NMTVis - Extended Neural Machine Translation Visualization System", https://doi.org/10.18419/DARUS-2124, DaRUS, V1
NMTVis is a web-based visual analytics system to analyze, understand, and correct translations generated with neural machine translation. First, a document can be translated using a neural machine translation model (we support an LSTM-based and the Transformer architecture). Afte... |
Sep 10, 2021
Munz, Tanja; Garcia, Rafael; Weiskopf, Daniel, 2021, "Visual Analytics System for Hidden States in Recurrent Neural Networks", https://doi.org/10.18419/DARUS-2052, DaRUS, V1
Source code of our visual analytics system for the interpretation of hidden states in recurrent neural networks. This project contains source code for preprocessing data and the visual analytics system. Additionally, we added precomputed data for immediate use in the visual analy... |
May 26, 2021
Munz, Tanja; Väth, Dirk; Kuznecov, Paul; Vu, Ngoc Thang; Weiskopf, Daniel, 2021, "NMTVis - Trained Models for our Visual Analytics System", https://doi.org/10.18419/DARUS-1850, DaRUS, V1
Trained models and vocabulary files for the use in our visual analytics system NMTVis. There are models for German to English and vice versa available for an LSTM-based and the Transformer architecture. |