Die vorliegenden Experimente dienen einem besseren Verständnis von Zweiphasenverdampfung und dazugehörigen Phänomenen unter erhöhtem Druck und Temperaturen. Der zu Grunde liegende Messaufbau nutzt eine Druckkammer mit Einlässen für Gas- und Flüssigstoffe, um Tropfen in einer temperatur- und druckkontrollierten Gasphasenumgebung fallen zu lassen. Die Kammer wird dabei durchflossen betrieben, das bedeutet, dass immer ein Gasstrom existiert, der die Umgebungsatmosphäre erneuert. Dadurch wird eine Sättigung der Umgebung durch die verdampfenden Tropfen verhindert. Vier mit Quarzgläsern versehene optische Zugänge, jeweils 90° zueinander im Kreuz angeordnet, erlauben das Einstrahlen von Laserlicht und Aufnehmen mit Kameras. Der Tropfen selbst wird in ein zylindrisches Mischplenum fallen gelassen, in dem er entweder auf reine gasförmige Stoffe (wie z.B. Stickstoff) oder bereits vor gemischte Dampfphasen trifft. Der hierzu notwendige Druck wird mithilfe einer Hochdruckdosierpumpe bzw. einen Membranbalg aufgebaut. Die Flüssigkeit wird anschließend durch einen Ölbad temperierten Injektor, an dessen Ende sich eine Kapillare befindet an der der Tropfen sich bildet, gedrückt. Mit Hilfe einer elektrostatischen Ablösevorrichtung erfolgt eine kontrolliere Ablösung des Tropfens von der Kapillare. Hierfür werden in Epoxidharz gegossene Zündkerzen verwendet, die mit Hochspannung beaufschlagt werden und zusammen mit der Kapillare einen Dipol bilden. Je nach Art der Flüssigkeit, z.B. Polarität oder innerer elektrischer Leitfähigkeit, können verschieden hohe Kräfte auf den Tropfen aufgebracht werden. Dies führt zur kontrollierten und reproduzierbaren Ablösung des Tropfens.
Eine neue Version der Druckzelle am ITLR Stuttgart ist im Aufbau. Diese Zelle wird Drücke bis 80 bar und Temperaturen bis 700 Kelvin aushalten, eine Verbesserung gegenüber den jetzt möglichen 60 bar und 570 Kelvin.
Zweidimensionale Ramanspektroskopie wurde an einem binären n-Heptan Stickstoffsystem durchgeführt. Dabei sollten quantitative Daten über die Tropenverdampfung an einem fallenden Tropfen gewonnen werden. Ein 532 nm Nd:YAG Laser wird hierfür zu einem 80 µm dicken Lichtschnitt umgeformt und über den fallenden Tropfen geschossen. Das resultierende Ramanstreulicht wird aufgefangen und spektral in zwei Kanäle unterteilt, welche jeweils mit einer Kamera aufgenommen werden. Durch ratiometrische Verarbeitung der Heptan und Stickstoffsignale lassen sich so Rückschlüsse auf die lokale Stoffkonzentration in dem Bildschnitt schließen. Dabei dient der Stickstoffkanal z.B. als Referenz der Einstrahlungsenergie und der lokalen Teilchenanzahldichte. Mehr Details zu dem Experiment und der Messtechnik finden sich in der folgenden Veröffentlichung des SFBs doi: 10.1016/j.proci.2016.07.037.