View: |
Part 1: Document Description
|
Citation |
|
---|---|
Title: |
Code for: Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments |
Identification Number: |
doi:10.18419/darus-2136 |
Distributor: |
DaRUS |
Date of Distribution: |
2021-10-15 |
Version: |
1 |
Bibliographic Citation: |
Zaverkin, Viktor; Holzmüller, David; Steinwart, Ingo; Kästner, Johannes, 2021, "Code for: Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments", https://doi.org/10.18419/DARUS-2136, DaRUS, V1 |
Citation |
|
Title: |
Code for: Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments |
Identification Number: |
doi:10.18419/darus-2136 |
Authoring Entity: |
Zaverkin, Viktor (Universität Stuttgart) |
Holzmüller, David (Universität Stuttgart) |
|
Steinwart, Ingo (Universität Stuttgart) |
|
Kästner, Johannes (Universität Stuttgart) |
|
Grant Number: |
EXC 2075 - 390740016 |
Grant Number: |
info:eu-repo/grantAgreement/EC/H2020/646717 |
Grant Number: |
info:eu-repo/grantAgreement/EC/H2020/646717 |
Distributor: |
DaRUS |
Access Authority: |
Kästner, Johannes |
Depositor: |
Holzmüller, David |
Date of Deposit: |
2021-09-15 |
Holdings Information: |
https://doi.org/10.18419/DARUS-2136 |
Study Scope |
|
Keywords: |
Chemistry, Computer and Information Science, Physics, GM-NN, Gaussian Moments, Potential Energy Surface, Atomistic Machine Learning, Computational Chemistry |
Abstract: |
Code and documentation for the improved Gaussian Moments Neural Network (GM-NN). An updated version can be found <a href="https://gitlab.com/zaverkin_v/gmnn">on GitLab</a> |
Notes: |
Basic instructions for installing and running the software can be found in the README.md file. |
Methodology and Processing |
|
Sources Statement |
|
Data Access |
|
Other Study Description Materials |
|
Related Publications |
|
Citation |
|
Title: |
V. Zaverkin, D. Holzmüller, I. Steinwart, and J. Kästner, “Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments,” J. Chem. Theory Comput. 17, 6658–6670 (2021). |
Identification Number: |
10.1021/acs.jctc.1c00527 |
Bibliographic Citation: |
V. Zaverkin, D. Holzmüller, I. Steinwart, and J. Kästner, “Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments,” J. Chem. Theory Comput. 17, 6658–6670 (2021). |
Label: |
.gitignore |
Notes: |
application/octet-stream |
Label: |
.gitlab-ci.yml |
Notes: |
application/octet-stream |
Label: |
LICENSE |
Notes: |
text/plain; charset=UTF-8 |
Label: |
pes_training.txt.default |
Notes: |
application/octet-stream |
Label: |
README.md |
Notes: |
text/markdown |
Label: |
requirements.txt |
Notes: |
text/plain |
Label: |
train.py.default |
Notes: |
application/octet-stream |
Label: |
make.bat |
Notes: |
application/x-msdownload |
Label: |
Makefile |
Notes: |
text/plain; charset=US-ASCII |
Label: |
conf.py |
Notes: |
text/x-python |
Label: |
index.rst |
Notes: |
application/octet-stream |
Label: |
install.rst |
Notes: |
application/octet-stream |
Label: |
parameters.rst |
Notes: |
application/octet-stream |
Label: |
adam.rst |
Notes: |
application/octet-stream |
Label: |
calculators.rst |
Notes: |
application/octet-stream |
Label: |
data.rst |
Notes: |
application/octet-stream |
Label: |
layers.rst |
Notes: |
application/octet-stream |
Label: |
neighborlist.rst |
Notes: |
application/octet-stream |
Label: |
pes_training.rst |
Notes: |
application/octet-stream |
Label: |
energy_conservation_tio2.png |
Notes: |
image/png |
Label: |
ethanol.rst |
Notes: |
application/octet-stream |
Label: |
fft_spectrum.png |
Notes: |
image/png |
Label: |
tio2.rst |
Notes: |
application/octet-stream |
Label: |
my_theme.css |
Notes: |
text/css |
Label: |
data_preparation.py |
Notes: |
text/x-python |
Label: |
energy_conservation.py |
Notes: |
text/x-python |
Label: |
ethanol.xyz |
Notes: |
chemical/x-xyz |
Label: |
ethanol_md.py |
Notes: |
text/x-python |
Label: |
ethanol_spectrum.py |
Notes: |
text/x-python |
Label: |
rutile_supercell.xyz |
Notes: |
chemical/x-xyz |
Label: |
tio2_md.py |
Notes: |
text/x-python |
Label: |
adam.py |
Notes: |
text/x-python |
Label: |
calculators.py |
Notes: |
text/x-python |
Label: |
data_pipeline.py |
Notes: |
text/x-python |
Label: |
layers.py |
Notes: |
text/x-python |
Label: |
neighborlist.py |
Notes: |
text/x-python |
Label: |
parameters.py |
Notes: |
text/x-python |
Label: |
pes_fit.py |
Notes: |
text/x-python |
Label: |
trainer.py |
Notes: |
text/x-python |
Label: |
utils.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
test_data_pipeline.py |
Notes: |
text/x-python |
Label: |
test_layers.py |
Notes: |
text/x-python |
Label: |
test_neighborlist.py |
Notes: |
text/x-python |