View: |
Part 1: Document Description
|
Citation |
|
---|---|
Title: |
deepsysid: System Identification Toolkit for Multistep Prediction using Deep Learning |
Identification Number: |
doi:10.18419/darus-3455 |
Distributor: |
DaRUS |
Date of Distribution: |
2023-05-15 |
Version: |
1 |
Bibliographic Citation: |
Baier, Alexandra; Frank, Daniel, 2023, "deepsysid: System Identification Toolkit for Multistep Prediction using Deep Learning", https://doi.org/10.18419/darus-3455, DaRUS, V1 |
Citation |
|
Title: |
deepsysid: System Identification Toolkit for Multistep Prediction using Deep Learning |
Identification Number: |
doi:10.18419/darus-3455 |
Authoring Entity: |
Baier, Alexandra (Universität Stuttgart) |
Frank, Daniel (Universität Stuttgart) |
|
Grant Number: |
EXC 2075 - 390740016 |
Distributor: |
DaRUS |
Access Authority: |
Baier, Alexandra |
Depositor: |
Baier, Alexandra |
Date of Deposit: |
2023-05-09 |
Holdings Information: |
https://doi.org/10.18419/darus-3455 |
Study Scope |
|
Keywords: |
Computer and Information Science, Engineering, System Identification, Nonlinear System, Dynamical System |
Abstract: |
<p>deepsysid is a system identification toolkit for multistep prediction using deep learning and hybrid methods.</p> <p>The toolkit is easy to use. After you follow the instructions in the <a href="https://darus.uni-stuttgart.de/file.xhtml?fileId=203227">README</a>, you will be able to download a dataset, run hyperparameter optimization and identify your best-performing multistep prediction models with just three commands: <br> <code> deepsysid download 4dof-sim-ship<br> deepsysid session --enable-cuda progress.json NEW<br> deepsysid session --enable-cuda --reportin=progress.json progress.json TEST_BEST </code> <br></p> The most current version of this software is available on <a href="https://github.com/AlexandraBaier/deepsysid">GitHub</a>. |
Methodology and Processing |
|
Sources Statement |
|
Data Access |
|
Other Study Description Materials |
|
Related Publications |
|
Citation |
|
Title: |
Baier, Alexandra, Boukhers, Zeyd, & Staab, Steffen (2021). Hybrid Physics and Deep Learning Model for Interpretable Vehicle State Prediction. ArXiv, abs/2103.06727. |
Identification Number: |
abs/2103.06727 |
Bibliographic Citation: |
Baier, Alexandra, Boukhers, Zeyd, & Staab, Steffen (2021). Hybrid Physics and Deep Learning Model for Interpretable Vehicle State Prediction. ArXiv, abs/2103.06727. |
Citation |
|
Title: |
Frank, Daniel, Latif, Decky Aspandi, Muehlebach, Michael, & Staab, Steffen (2022). Robust Recurrent Neural Network to Identify Ship Motion in Open Water with Performance Guarantees - Technical Report. ArXiv, abs/2212.05781. |
Identification Number: |
abs/2212.05781 |
Bibliographic Citation: |
Frank, Daniel, Latif, Decky Aspandi, Muehlebach, Michael, & Staab, Steffen (2022). Robust Recurrent Neural Network to Identify Ship Motion in Open Water with Performance Guarantees - Technical Report. ArXiv, abs/2212.05781. |
Citation |
|
Title: |
Alexandra Baier, Decky Aspandi and Steffen Staab, "ReLiNet: Stable and Explainable Multistep Prediction with Recurrent Linear Parameter Varying Networks", Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23), 2023. |
Bibliographic Citation: |
Alexandra Baier, Decky Aspandi and Steffen Staab, "ReLiNet: Stable and Explainable Multistep Prediction with Recurrent Linear Parameter Varying Networks", Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23), 2023. |
Label: |
.flake8 |
Notes: |
application/octet-stream |
Label: |
.gitignore |
Notes: |
application/octet-stream |
Label: |
.pre-commit-config.yaml |
Notes: |
application/octet-stream |
Label: |
LICENSE |
Notes: |
text/plain; charset=US-ASCII |
Label: |
poetry.lock |
Notes: |
application/octet-stream |
Label: |
pyproject.toml |
Notes: |
application/octet-stream |
Label: |
README.md |
Notes: |
text/markdown |
Label: |
patrolship.json |
Notes: |
application/json |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
download.py |
Notes: |
text/x-python |
Label: |
interface.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
base.py |
Notes: |
text/x-python |
Label: |
metrics.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
lime.py |
Notes: |
text/x-python |
Label: |
switching.py |
Notes: |
text/x-python |
Label: |
utils.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
base.py |
Notes: |
text/x-python |
Label: |
datasets.py |
Notes: |
text/x-python |
Label: |
linear.py |
Notes: |
text/x-python |
Label: |
narx.py |
Notes: |
text/x-python |
Label: |
recurrent.py |
Notes: |
text/x-python |
Label: |
utils.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
bounded_residual.py |
Notes: |
text/x-python |
Label: |
physical.py |
Notes: |
text/x-python |
Label: |
semiphysical.py |
Notes: |
text/x-python |
Label: |
serial.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
klinreg.py |
Notes: |
text/x-python |
Label: |
switchrnn.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
fnn.py |
Notes: |
text/x-python |
Label: |
loss.py |
Notes: |
text/x-python |
Label: |
rnn.py |
Notes: |
text/x-python |
Label: |
switching.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
configuration.py |
Notes: |
text/x-python |
Label: |
data_io.py |
Notes: |
text/x-python |
Label: |
evaluation.py |
Notes: |
text/x-python |
Label: |
explaining.py |
Notes: |
text/x-python |
Label: |
gridsearch.py |
Notes: |
text/x-python |
Label: |
metrics.py |
Notes: |
text/x-python |
Label: |
model_io.py |
Notes: |
text/x-python |
Label: |
training.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
base.py |
Notes: |
text/x-python |
Label: |
bounded_residual.py |
Notes: |
text/x-python |
Label: |
inference.py |
Notes: |
text/x-python |
Label: |
io.py |
Notes: |
text/x-python |
Label: |
runner.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
base.py |
Notes: |
text/x-python |
Label: |
bibo.py |
Notes: |
text/x-python |
Label: |
incremental.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
pipeline.py |
Notes: |
text/x-python |
Label: |
test_experiment_session_manager.py |
Notes: |
text/x-python |
Label: |
test_pipeline.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
test_execution.py |
Notes: |
text/x-python |
Label: |
test_get_parameter_count.py |
Notes: |
text/x-python |
Label: |
test_metrics.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |