Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression [arXiv v1] (doi:10.18419/darus-2615)

View:

Part 1: Document Description
Part 2: Study Description
Part 5: Other Study-Related Materials
Entire Codebook

(external link)

Document Description

Citation

Title:

Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression [arXiv v1]

Identification Number:

doi:10.18419/darus-2615

Distributor:

DaRUS

Date of Distribution:

2022-04-13

Version:

1

Bibliographic Citation:

Holzmüller, David; Zaverkin, Viktor; Kästner, Johannes; Steinwart, Ingo, 2022, "Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression [arXiv v1]", https://doi.org/10.18419/darus-2615, DaRUS, V1

Study Description

Citation

Title:

Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression [arXiv v1]

Identification Number:

doi:10.18419/darus-2615

Authoring Entity:

Holzmüller, David (Universität Stuttgart)

Zaverkin, Viktor (Universität Stuttgart)

Kästner, Johannes (Universität Stuttgart)

Steinwart, Ingo (Universität Stuttgart)

Grant Number:

EXC 2075 - 390740016

Grant Number:

EXC 2075 - 390740016

Distributor:

DaRUS

Access Authority:

Holzmüller, David

Access Authority:

Holzmüller, David

Access Authority:

Steinwart, Ingo

Depositor:

Holzmüller, David

Date of Deposit:

2022-03-14

Holdings Information:

https://doi.org/10.18419/darus-2615

Study Scope

Keywords:

Computer and Information Science, Mathematical Sciences, Active Learning, Deep Learning, Artificial Neural Network, Regression

Abstract:

This dataset contains code and data for our paper <a href=https://arxiv.org/abs/2203.09410v1>"A Framework and Benchmark for Deep Batch Active Learning for Regression"</a>. The code can be used to reproduce the results, to benchmark new methods, or to apply the presented methods to new Deep Batch Active Learning problems. The code is also available on <a href=https://github.com/dholzmueller/bmdal_reg>GitHub</a>. Information on the code can be found in the file <a href="https://darus.uni-stuttgart.de/file.xhtml?fileId=102389">README.md</a> and in the Jupyter notebooks in the examples folder. Additionally, we provide the files <code>results.tar.gz</code> and <code>plots.tar.gz</code> which contain generated data and plots. These files can be unpacked in folders specified in <code>custom_paths.py</code> (see <a href="https://darus.uni-stuttgart.de/file.xhtml?fileId=102389">README.md</a>) and can be used as described in <code>examples/benchmark.ipynb</code>.

Notes:

Basic instructions for installing and running the software can be found in the <a href="https://darus.uni-stuttgart.de/file.xhtml?fileId=102389">README.md</a> file.

Methodology and Processing

Sources Statement

Data Access

Other Study Description Materials

Related Studies

<b>Dataset for arXiv v2:</b> <p>Holzmüller, David; Zaverkin, Viktor; Kästner, Johannes; Steinwart, Ingo, 2022, "Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression [arXiv v2]", doi:<a href="https://doi.org/10.18419/darus-3110">10.18419/darus-3110</a> , DaRUS, V1</p>

<b>Dataset for arXiv v3:</b> <p>Holzmüller, David; Zaverkin, Viktor; Kästner, Johannes; Steinwart, Ingo, 2022, "Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression [arXiv v3]", doi:<a href="https://doi.org/10.18419/darus-3394">10.18419/darus-3394</a> , DaRUS, V1</p>

Related Publications

Citation

Title:

David, Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A Framework and Benchmark for Deep Batch Active Learning for Regression, 2022.

Identification Number:

2203.09410

Bibliographic Citation:

David, Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A Framework and Benchmark for Deep Batch Active Learning for Regression, 2022.

Other Study-Related Materials

Label:

check_task_learnability.py

Notes:

text/x-python

Other Study-Related Materials

Label:

custom_paths.py.default

Notes:

application/octet-stream

Other Study-Related Materials

Label:

data.py

Notes:

text/x-python

Other Study-Related Materials

Label:

data.tar.gz

Text:

Compressed folder containing downloaded raw and processed data sets as generated by download_data.py at the time of running the experiments.

Notes:

application/gzip

Other Study-Related Materials

Label:

download_data.py

Notes:

text/x-python

Other Study-Related Materials

Label:

layers.py

Notes:

text/x-python

Other Study-Related Materials

Label:

LICENSE

Notes:

text/plain; charset=US-ASCII

Other Study-Related Materials

Label:

models.py

Notes:

text/x-python

Other Study-Related Materials

Label:

NOTICE

Notes:

text/plain; charset=US-ASCII

Other Study-Related Materials

Label:

plots.tar.gz

Text:

Compressed folder containing all generated plots.

Notes:

application/gzip

Other Study-Related Materials

Label:

README.md

Notes:

text/markdown

Other Study-Related Materials

Label:

rename_algs.py

Notes:

text/x-python

Other Study-Related Materials

Label:

requirements.txt

Notes:

text/plain

Other Study-Related Materials

Label:

results.tar.gz

Text:

Compressed folder of experimental results generated by run_evaluation.py.

Notes:

application/gzip

Other Study-Related Materials

Label:

run_evaluation.py

Notes:

text/x-python

Other Study-Related Materials

Label:

run_experiments.py

Notes:

text/x-python

Other Study-Related Materials

Label:

task_execution.py

Notes:

text/x-python

Other Study-Related Materials

Label:

test_single_task.py

Notes:

text/x-python

Other Study-Related Materials

Label:

train.py

Notes:

text/x-python

Other Study-Related Materials

Label:

utils.py

Notes:

text/x-python

Other Study-Related Materials

Label:

algorithms.py

Notes:

text/x-python

Other Study-Related Materials

Label:

features.py

Notes:

text/x-python

Other Study-Related Materials

Label:

feature_data.py

Notes:

text/x-python

Other Study-Related Materials

Label:

feature_maps.py

Notes:

text/x-python

Other Study-Related Materials

Label:

layer_features.py

Notes:

text/x-python

Other Study-Related Materials

Label:

selection.py

Notes:

text/x-python

Other Study-Related Materials

Label:

__init__.py

Notes:

text/x-python

Other Study-Related Materials

Label:

analysis.py

Notes:

text/x-python

Other Study-Related Materials

Label:

plotting.py

Notes:

text/x-python

Other Study-Related Materials

Label:

visualize_lcmd.py

Notes:

text/x-python

Other Study-Related Materials

Label:

__init__.py

Notes:

text/x-python

Other Study-Related Materials

Label:

benchmark.ipynb

Notes:

application/x-ipynb+json

Other Study-Related Materials

Label:

framework_details.ipynb

Notes:

application/x-ipynb+json

Other Study-Related Materials

Label:

using_bmdal.ipynb

Notes:

application/x-ipynb+json