View: |
Part 1: Document Description
|
Citation |
|
---|---|
Title: |
Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression [arXiv v1] |
Identification Number: |
doi:10.18419/darus-2615 |
Distributor: |
DaRUS |
Date of Distribution: |
2022-04-13 |
Version: |
1 |
Bibliographic Citation: |
Holzmüller, David; Zaverkin, Viktor; Kästner, Johannes; Steinwart, Ingo, 2022, "Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression [arXiv v1]", https://doi.org/10.18419/darus-2615, DaRUS, V1 |
Citation |
|
Title: |
Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression [arXiv v1] |
Identification Number: |
doi:10.18419/darus-2615 |
Authoring Entity: |
Holzmüller, David (Universität Stuttgart) |
Zaverkin, Viktor (Universität Stuttgart) |
|
Kästner, Johannes (Universität Stuttgart) |
|
Steinwart, Ingo (Universität Stuttgart) |
|
Grant Number: |
EXC 2075 - 390740016 |
Grant Number: |
EXC 2075 - 390740016 |
Distributor: |
DaRUS |
Access Authority: |
Holzmüller, David |
Access Authority: |
Holzmüller, David |
Access Authority: |
Steinwart, Ingo |
Depositor: |
Holzmüller, David |
Date of Deposit: |
2022-03-14 |
Holdings Information: |
https://doi.org/10.18419/darus-2615 |
Study Scope |
|
Keywords: |
Computer and Information Science, Mathematical Sciences, Active Learning, Deep Learning, Artificial Neural Network, Regression |
Abstract: |
This dataset contains code and data for our paper <a href=https://arxiv.org/abs/2203.09410v1>"A Framework and Benchmark for Deep Batch Active Learning for Regression"</a>. The code can be used to reproduce the results, to benchmark new methods, or to apply the presented methods to new Deep Batch Active Learning problems. The code is also available on <a href=https://github.com/dholzmueller/bmdal_reg>GitHub</a>. Information on the code can be found in the file <a href="https://darus.uni-stuttgart.de/file.xhtml?fileId=102389">README.md</a> and in the Jupyter notebooks in the examples folder. Additionally, we provide the files <code>results.tar.gz</code> and <code>plots.tar.gz</code> which contain generated data and plots. These files can be unpacked in folders specified in <code>custom_paths.py</code> (see <a href="https://darus.uni-stuttgart.de/file.xhtml?fileId=102389">README.md</a>) and can be used as described in <code>examples/benchmark.ipynb</code>. |
Notes: |
Basic instructions for installing and running the software can be found in the <a href="https://darus.uni-stuttgart.de/file.xhtml?fileId=102389">README.md</a> file. |
Methodology and Processing |
|
Sources Statement |
|
Data Access |
|
Other Study Description Materials |
|
Related Studies |
|
<b>Dataset for arXiv v2:</b> <p>Holzmüller, David; Zaverkin, Viktor; Kästner, Johannes; Steinwart, Ingo, 2022, "Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression [arXiv v2]", doi:<a href="https://doi.org/10.18419/darus-3110">10.18419/darus-3110</a> , DaRUS, V1</p> |
|
<b>Dataset for arXiv v3:</b> <p>Holzmüller, David; Zaverkin, Viktor; Kästner, Johannes; Steinwart, Ingo, 2022, "Code and Data for: A Framework and Benchmark for Deep Batch Active Learning for Regression [arXiv v3]", doi:<a href="https://doi.org/10.18419/darus-3394">10.18419/darus-3394</a> , DaRUS, V1</p> |
|
Related Publications |
|
Citation |
|
Title: |
David, Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A Framework and Benchmark for Deep Batch Active Learning for Regression, 2022. |
Identification Number: |
2203.09410 |
Bibliographic Citation: |
David, Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A Framework and Benchmark for Deep Batch Active Learning for Regression, 2022. |
Label: |
check_task_learnability.py |
Notes: |
text/x-python |
Label: |
custom_paths.py.default |
Notes: |
application/octet-stream |
Label: |
data.py |
Notes: |
text/x-python |
Label: |
data.tar.gz |
Text: |
Compressed folder containing downloaded raw and processed data sets as generated by download_data.py at the time of running the experiments. |
Notes: |
application/gzip |
Label: |
download_data.py |
Notes: |
text/x-python |
Label: |
layers.py |
Notes: |
text/x-python |
Label: |
LICENSE |
Notes: |
text/plain; charset=US-ASCII |
Label: |
models.py |
Notes: |
text/x-python |
Label: |
NOTICE |
Notes: |
text/plain; charset=US-ASCII |
Label: |
plots.tar.gz |
Text: |
Compressed folder containing all generated plots. |
Notes: |
application/gzip |
Label: |
README.md |
Notes: |
text/markdown |
Label: |
rename_algs.py |
Notes: |
text/x-python |
Label: |
requirements.txt |
Notes: |
text/plain |
Label: |
results.tar.gz |
Text: |
Compressed folder of experimental results generated by run_evaluation.py. |
Notes: |
application/gzip |
Label: |
run_evaluation.py |
Notes: |
text/x-python |
Label: |
run_experiments.py |
Notes: |
text/x-python |
Label: |
task_execution.py |
Notes: |
text/x-python |
Label: |
test_single_task.py |
Notes: |
text/x-python |
Label: |
train.py |
Notes: |
text/x-python |
Label: |
utils.py |
Notes: |
text/x-python |
Label: |
algorithms.py |
Notes: |
text/x-python |
Label: |
features.py |
Notes: |
text/x-python |
Label: |
feature_data.py |
Notes: |
text/x-python |
Label: |
feature_maps.py |
Notes: |
text/x-python |
Label: |
layer_features.py |
Notes: |
text/x-python |
Label: |
selection.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
analysis.py |
Notes: |
text/x-python |
Label: |
plotting.py |
Notes: |
text/x-python |
Label: |
visualize_lcmd.py |
Notes: |
text/x-python |
Label: |
__init__.py |
Notes: |
text/x-python |
Label: |
benchmark.ipynb |
Notes: |
application/x-ipynb+json |
Label: |
framework_details.ipynb |
Notes: |
application/x-ipynb+json |
Label: |
using_bmdal.ipynb |
Notes: |
application/x-ipynb+json |